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1 Calculation
RFEM uses the finite element method based on the updated Lagrangian formulation and the
displacement formulation.

1.1 Nonlinearity

Nature is nonlinear. Although we often look to simplify the world around us, with the increase
of hardware capacity and software improvements in the last decades the linearization of real life
engineering problems is not always necessary. RFEM offers a huge variety of nonlinear models
covering many areas of use.

1.2 Parallelization

In order to achieve maximum computational efficiency, calculation is parallelized on different
levels – the direct Cholesky linear solver is parallelized by parallel elimination of matrix rows, the
dynamic relaxationmethod is parallelized through its natural explicit definition. Many other blocks
are also parallelized (local element matrix assembly or beam cross-sectional mesh generation).

1.3 Types of Analysis

The types of deformation analysis available in RFEM can be divided into:

• Static analysis

• Dynamic analysis

• Stability analysis

1.4 Static Analysis

Nonlinearities in RFEM can be divided into the following:

• Structural nonlinearity (nonlinear releases (= hinges), nonlinear supports, etc.)

• Material nonlinearity (nonlinear elasticity, plasticity, masonry calculation, calculation of cables
and membranes, etc.)

• Geometrical nonlinearity

Geometrical nonlinearity is handled in RFEM according to the following user settings:

• Geometrically linear static analysis (small deformation theory, the so-called first-order theory)

• The second-order theory (P-delta analysis, improved small deformation theory taking axial
forces into account)

• Large deformation theory (large deformations and large strains, nonlinear methods including
the Newton-Raphsonmethod, the Picard secantmethod and their combination, the so-called
third-order theory)

• Post-critical analysis (large deformations and large strains, nonlinear methods including the
modified Newton method and the dynamic relaxation method)

The large deformation theory and post-critical analysis differ only in the nonlinear methods used.
The latter choice allows the calculation of post-critical behavior of a structure which goes through
a singular point, i.e., where the stiffness matrix becomes singular. For a detailed description of the
nonlinear methods, see section Nonlinear Solvers below. In case of the large deformation theory,
the axial strain is computedwith respect to the actual and not reference length, as in the first-order
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theory. Under a sufficient number of load steps, the axial strain numerically tends to a logarithmic
strain definition. In case of beams computed under the large deformation theory, the axial stiffness
is computed directly according to the logarithmic strain definition, which gets precise results with
one load increment only.

1.4.1 Linear Solvers

The linear solvers available in RFEM are:

• Direct linear solver – parallelized Cholesky solver for symmetric sparse matrices (default
choice)

• Iterative linear solver for symmetric sparse matrices

The first method is faster except for large positions, where the iterative approach can be less time
demanding. The iterative linear solver, on the other hand, can be easier parallelized. The choice
between the nonlinear and the linear solver is up to the user.

1.4.2 Nonlinear Solvers

Nonlinear calculations in general yield a system of nonlinear algebraic equations, which need to
be solved. The robustness of the nonlinear solver is a crucial part of the calculation process within
the framework of finite element analysis. The nonlinear method transforms the nonlinear problem
into a sequence of linear problems, which are then solved by a linear solver. The nonlinear solvers
available in RFEM are:

• Newton–Raphson method (default choice)

• Newton–Raphson combined with the Picard method

• Picard method (secant method)

• Newton–Raphson with constant stiffness matrix

• Modified Newton–Raphson method

• Dynamic relaxation

The Newton–Raphson nonlinear method is preferred in case of a continuous right-hand side.
In case of discontinuities, the Picard method can be used (especially in combination with the
Newton–Raphson as a corrector) as a more robust choice. The post-critical behavior, where the
solver has to overcome limit points with singular stiffnessmatrices, is either solved by themodified
Newton–Raphson or by the dynamic relaxation method.

1.4.2.1 Newton–Raphson

In thismethod, the tangential stiffnessmatrix is calculated as a function of the current deformation
state and inverted in every iteration cycle. In the majority of cases, the method features a fast
(quadratic) convergence.

1.4.2.2 Picard

This method is also known as the fixed-point iterationmethod. It can be thought of as a finite-dif-
ference approximation of the Newton method. The difference is considered between the current
iteration cycle and the initial iteration cycle in the current load step. The method does not con-
verge as quickly as Newton's method in general, but it can be more robust for some nonlinear
problems.
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1.4.2.3 Newton–Raphson Combined with Picard

The analysis starts as the Picard method and then switches to the Newton method. The idea
behind this is to use the robust method far from equilibrium and the fast convergent method near
equilibrium. The first n percent of iterations, for which the Picard method is used, are set in the
Calculation Parameters dialog box.

1.4.2.4 Newton–Raphson with Constant Stiffness Matrix

This method is like the Newton–Raphson method. The difference is that the stiffness matrix is
assembled only once in the first iteration cycle. It is then used in all subsequent cycles. There-
fore, this method is faster, but not as robust as the Newton-Raphson method and the modified
Newton–Raphson method.

1.4.2.5 Modified Newton–Raphson

Themethod is used for post-critical analysis, that is, for problems inwhich a region of instability has
to be overcome to solve the problem. In the case of instability, where the stiffness matrix cannot
be inverted, the stiffness matrix from the last stable iteration step is used. This matrix is used until
the stability region is reached again. The methods enables the handling of decay diagrams:

Figure 1.1: Overcoming limit point by means of the modified Newton–Raphson method

1.4.2.6 Dynamic Relaxation

This method is used for large deformation and post-critical. In this method, an artificial time
parameter is introduced. Considering inertia and damping, the problem is treated as a dynamic
one, using the explicit time integration method. The stiffness matrix is never inverted in this
approach. The method also contains Rayleigh damping, which can be set by constants 𝛼, 𝛽
according to the formula

M
d2u
dt2

+ C
du
dt

+ K(u)u = f, (1.1)

C = 𝛼M + 𝛽diag[K11(u),K22(u),...,Knn(u)], (1.2)

whereM is the lumped (diagonal) mass matrix, C is the diagonal damping matrix, K is the stiffness
matrix, dependent on the solution u in the nonlinear case, f is the vector of external forces, u is
the discretized displacement and rotation vector, n is the dimension of u.
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1.5 Dynamic Analysis

Dynamic calculation is available in the add-on module RF-DYNAM. Dynamic analysis contains:

• Eigenvectors

• Forced vibrations

• Equivalent loads

Forced vibrations choice can further include the following loadings

• Time history analysis

• Response spectrummethod

• Multi-point response spectrummethod

The response spectra method is among others used for seismic analysis. It has two possibilities:

• Linear response spectra method

• Nonlinear (push over) method

Rayleigh damping or Lehr's damping is possible to select. Rayleigh damping was described in the
previous paragraph. Lehr's damping (see [1], p.264) allows the user to specify the relative damping
Di of each mode independently according to equation

d2qi
dt2

+ 2Di𝜔i
dqi
dt

+ 𝜔 2
i qi = fi, (i = 1,…,n), (1.3)

where 𝜔i is the i-th eigenfrequency, qi is the unknown solution component corresponding to the
eigenfrequency 𝜔i, Di [−] is the relative damping corresponding to the eigenfrequency 𝜔i, and fi
is the corresponding right-hand side.

Time history analysis is either computed by:

• Modal analysis or

• Direct integration method

The superposition rule is either square root of the sum of the squares (SRSS) or complete quadratic
combination (CQC). The direct integration method is based on the implicit Newmark method,
which is secondorder accurate in timeandabsolutely stable. TheNewmarkmethoduses a constant
time step approach.

The following types of mass matrix definition are available

• Diagonal (lumped) mass matrix

• Diagonal (lumped) mass matrix with rotational elements (improved version)

• Unit mass matrix

1.6 Stability Analysis

The stability calculation is available in the add-on module RF-STABILITY. Two methods for stability
calculation are available:

• Linear eigenvalue analysis

• Nonlinear stability analysis (nonlinear calculation, load is increased until structure failure, the
critical load factor is determined)
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For the linear eigenvalue analysis four methods are available:

• Lanczos method

• Calculation of the roots of the characteristic polynomial

• Subspace iteration method

• Improved Conjugate Gradient (ICG) iteration method

1.7 Member Calculation

In RFEM the following types of members can be computed:

• Beam (Bending resisting member that can transmit all internal forces)

• Rigid member (Coupling member with rigid stiffness. It is internally modelled by a high
stiffness value, which is set automatically by a couple of orders higher than the surrounding
construction, which allows the member to behave rigidly and to be numerically stable at the
same time.)

• Rib (Downstand beam considering the effective slab width)

• Truss (Beam with moment releases at both ends)

• Truss (only N) (Member with stiffness EA only)

• Tension (Truss (only N) with failure in case of compression force)

• Compression (Truss (only N) with failure in case of tensile force)

• Buckling (Truss (only N) with failure in case of compression force > Ncr)

• Cable (in compression it loses its stiffness, has to be calculated with the large deformation
option only)

• Cable on pulleys (Member on polyline, can only be shifted in longitudinal direction, absorbing
tensile forces only (pulley))

• Definable stiffness (Member with user-defined stiffnesses, without necessity to define
cross-section)

• Coupling rigid–rigid (Rigid coupling with bending resisting connections at both ends)

• Coupling rigid–hinge (Rigid coupling with bending resisting connection at member start and
hinged connection at member end)

• Coupling hinge–rigid (Rigid coupling with hinged connection at member start and bending
resisting connection at member end)

• Coupling hinge–hinge (Rigid coupling with hinged connections at both ends – only axial
force is transmitted

• Spring (Member with spring stiffness, incl. nonlinear behavior)

• Dashpot (Parallel combination of viscous dashpot and elastic spring i.e. Kelvin–Voigt model.
In static analyses, only the spring part is taken into account.)

A large database of cross-sections is available in RFEM. Hybrid beams, which allowmore than one
material for the cross-section, are also supported. Each beam can be further equipped by a release
(= hinge, in general nonlinear) on each side.
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1.8 Plate and Shell Calculation

Two types of plate theories, with respect to the transversal shear approximation, can be selected:

• Mindlin theory (linear shear theory, default choice)

• Kirchhoff theory (no transversal shear considered, suitable only for thin plates). The Kirchhoff
theory is available only for linear calculations.

The types of surfaces / plates in RFEM:

• Surfaces with material orthotropy – plates of constant thickness with orthotropic material
defined by six elastic constants

• Surfaces with geometrical orthotropy – surface with periodically varying thickness. By the
so-called smeared stiffness approach, the 8×8 average stiffness matrix is assembled. The list
of all plates of these types, supported in RFEM, follows:

a. Effective thickness (orthotropic material possibility)

b. Defined by stiffness matrix (This plate type allows the user to define an arbitrary plate
defined by an 8×8 stiffness matrix. This definition allows the definition of unsymmetric
compositions also. Initial calculation of the stiffness matrix can be made outsideand
imported into RFEM easily from Excel (and exported also)).

c. Coupling

d. Unidirectional ribbed plate

e. Bidirectional ribbed plate

f. Trapezoidal sheet

g. Hollow core slab

h. Grillage

i. Unidirectional box floor

• Without tension surface – plate made of isotropic material. The calculation is nonlinear due to
the effect occurring, for example, in masonry walls: under tension the plate loses its in-plane
stiffness. Bending is handled linearly.

• Rigid plate – plate with rigid stiffness. It is internally modelled by a high stiffness value, which
is set automatically by a couple of orders higher than the surrounding construction, which
allows the plate to behave rigidly and to be numerically stable at the same time.

• Laminated plate – RFEM allows the analysis of laminated plates (= multilayered plates). Any
number of layers with material orthotropy is allowed. An unsymmetric composition is sup-
ported. The transversal shear calculation is based on the Grashoff formula. Stress/strain
dependence throughout the plate thickness can be shown graphically in any point of the
plate.

• Safety glass – safety (laminated) glass is a multilayered plate consisting of glass and foil layers.
The elastic properties of glass and foil differ significantly – by a couple of orders. Due to the
significant difference in stiffness, there is a significant difference in the angles of the normal
lines (the deformed points are connected to create the normal lines in each layer). These
special plates are solved by solid elements to handle the situation accurately.

• Insulatingglassunits – in insulatingglass units, glass layers (or safety glass layers) are combined
with gas layers. Gas is simulated by solid elements (see the section List of All Elements for
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more details). Large-deformation calculation is necessary in this case. The calculation allows
the consideration of solar flux radiation and infinite ray reflections in the glass unit.

• Membranes – surfaces with no bending stiffness (textile, for example). Isotropic as well as
orthotropic membranes can be defined. The calculation is nonlinear due to the effect which
occurs in real membranes – under compression the membrane loses its stiffness. Membranes
can be calculated only with the large deformations. Let us note that RFEM also has the
feature of nonlinear form-finding techniques, which allows finding the unknown shape of
a membrane surface that is useful in membrane structure design (circus tent design, for
example).

Note, that curved surfaces in RFEM are approximated by planar finite elements. In nodes where
planar elements are joined, deformations and rotations are forced to be equal. This approximation
converges with a finer mesh to exact values on curved surfaces.

1.9 Load

Loads in RFEM can be defined in many different ways:

• Nodal load (force load, moment load, imposed deflection load, imposed rotation load)

• Line Load (force intesity load, moment intesity load, imposed deflection load, load can vary
along the line length)

• Member Load (force intesity loading, moment density loading, temperature loading, axial
strain loading, axial displacement loading, precamber loading, initial/end prestress loading,
displacement loading, rotation loading, pipe loading, rotary motion loading, imperfection
loading, loading can vary along the member length)

• Surface Load (pressure loading, temperature loading, strain loading, precamber loading, rotary
motion loading)

• Solid Load (force intesity loading, temperature loading, strain loading, buoyancy loading,
rotary motion loading)

• Free concentrated load – A free concentrated load acts as a force or moment on any location
of the surface.

• Free Line Loads – A free line load acts as a uniform or linearly variable force along a freely
definable line of a surface.

• Free rectangular / circular / polygon load – A free rectangular / circular / polygon load acts as a
uniform or linearly variable surface load on a rectangular / circular / polygon, freely definable
part of a surface.

1.10 Support

RFEM features the following kind of supports:

• Nodal support

• Line support

• Surface support (implementation is based on the subsoil implementation described in the
next point)

• Subsoil simulation (using two models – Winkler subsoil and Pasternak subsoil, which allows
the definition of shear stiffnesses in the subsoil)

Nodal and line supports can act with respect to any degree of freedom (ux, uy, uz, 𝜑x, 𝜑y, 𝜑z), can
work in the rotated coordinate system, and it is possible to add linear springs in any direction.
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Nodal supports are further equipped with many nonlinearities like nonlinear springs defined by a
multilinear diagram, by partial activity behavior (not acting in the case of positive or negative force
in a particular direction), or by friction (stiffness dependence on force in a particular direction).
Linear and surface supports are further equipped by partial activity behavior (not acting in case of
positive or negative force in a particular direction).

1.11 Release

Two types of releases are available in RFEM:

• Nodal release

• Line release

A release (= hinge) between two nodes allows the connection of any degree of freedom
(ux, uy, uz, 𝜑x, 𝜑y, 𝜑z), allows the definition of linear stiffness between any degree of freedom,
and is also equipped with nonlinearities: nonlinear hinge behavior defined by a multilinear di-
agram, partial activity behavior and fixed-under-condition behavior (fixed, if My is positive, for
example). A special possibility is a scissor release. With a scissor release, you can model crossing
beams. For example, there are four members connected at one node. Each of the two member
pairs transfers moments in its continuous direction, but they do not transfer any moments to the
other pair. Only axial and shear forces are transferred in the node. A line release in RFEM allows
linear behaviour only.

1.12 Material Models

RFEM contains an extensive database of materials from various technical standards and company
specifications (steel, concrete, glass, foils, wood). Special materials available in RFEM are gasses (in
RFEM solved using solid elements, see the description of finite elements used in RFEM below) and
materials with temperature dependent properties. From the modelling point of view, all materials
can be modelled using different material models:

− Linear material models:

− Isotropic Linear Elastic

− Isotropic Thermal-Elastic (elastic parameters are temperature dependent)

− Orthotropic 2D (calculations of wood, carbon fiber materials etc.)

− Orthotropic 3D (calculations of wood, carbon fiber materials etc.)

−Nonlinear material models:

− Isotropic Plastic 1D (fully plastic model with plastic strains, arbitrary cross-sections)

− Isotropic Plastic 2D/3D (fully plastic model with plastic strains, the von Mises hypothesis)

− Nonlinear Elastic 1D (nonlinear calculation without considering plastic strains)

− Nonlinear Elastic 2D/3D (nonlinear calculation without considering plastic strains, accord-
ing to the following hypotheses: von Mises, Tresca, Drucker–Prager, Mohr–Coulomb)

− Orthotropic Plastic 2D (plastic calculations of wood, based on the Tsai–Wu hypothesis)

− Orthotropic Plastic 3D (plastic calculations of wood, based on the Tsai–Wu hypothesis)

− Isotropic Masonry 2D (calculation of masonry walls using maximum tensile limit stresses)
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In practice it is often necessary to model materials which have different yield limits in tension and
in compression. The material models which can handle these effects are the following:

• Nonlinear Elastic 1D

• Nonlinear Elastic 2D/3D (only the Drucker–Prager and Mohr–Coulomb hypotheses)

• Orthotropic Plastic 2D

• Orthotropic Plastic 3D

Isotropic hardening is implemented in all of the above mentioned material models. The latter
three models (Orthotropic Plastic 2D, Orthotropic Plastic 3D and Isotropic Masonry 2D) allow
the definition of bilinear hardening, all other nonlinear material models allow the definition of
multilinear hardening, defined by a diagram). Kinematic hardening is not available.

Another feature is the calculation of cables (special type of member) andmembranes (special type
of surface), which have no bending and compression stiffness. The calculation process lowers the
stiffness in compression, which makes the calculation nonlinear. Large deflection theory (third
order theory) is necessary to be used in that case.

1.13 ConstructionModels
The following construction models can be selected:

ConstructionModels Available Unknowns Plates are Treated as

3D ux, uy, uz, 𝜑x, 𝜑y, 𝜑z Shells (bending+membrane loading)

2D - XY uz, 𝜑x, 𝜑y Plate (bending loading only)

2D - XZ ux, uz, 𝜑y Wall (membrane loading only)

2D - XY ux, uy, 𝜑z Wall (membrane loading only)

Table 1.1: Construction Models in RFEM

1.14 Appendix - Second Order Analysis
Second-order analysis is on the half way between the first-order theory (small deformation theory)
and the large deformation analysis. The small deformation theory is calculated in the undeformed
configuration, the resulting equations are linear and therefore no iterations are needed. The large
deformation analysis, on the other hand, is calculated in the deformed configuration, which is
updated in each iteration. The resulting equations are therefore nonlinear. As part of the large
deformation theory, the effect of axial forces on the bending stiffness is considered (the so-called
P-delta/P-Delta effect). Tensile forces increase the bending stiffness, compressive forces decrease
the bending stiffness. The second-order analysis is calculated in the undeformed configuration,
however, the effect of axial forces on thebending stiffness is considered. If axial forces are supposed
to be known, then the problem is linear and can be therefore solved within one iteration. If axial
forces are unknown, which is the usual case, the problem is solved iteratively as a sequence of
linear problems, in which the axial force is updated from the previous iteration and considered
constant within the particular iteration step. This numerical approach is in fact the fixed-point
iteration method, in RFEM called equivalently the Picard method. The Newton method is not
available for this type of analysis1. Let us clarify the second-order analysis on the beam equation
(see Petersen, Statik und Stabilität der Baukonstruktionen, 1982, p.187)

d4w(x)
dx4

+ N
EIy

d2w(x)
dx2⏟

second-order effect

= q(x)
EIy

(1.4)

1 The Newton method could be used in general. This would require to express the axial force N in terms of unknown de-
flections and rotations, the resulting equations would be nonlinear. However, this approach is not used in RFEM.
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wherew(x) is the beam transversal deflection, N is the axial force (N > 0means tensional force), E
is Young's modulus, Iy is the bending moment of inertia and q(x) is the pressure load. We easily
see that by considering the axial force N constant, the equation is linear. If the axial force N is zero,
then the equation (1.4) reduces to the standard Euler–Bernoulli beam equation.

In RFEM the second-order theory is available not only for beams, but also for plates and solids.
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2 Finite Elements

2.1 Finite Elements from Topological Point of View

Dimensions Name Number of Nodes Sketch

1D beam 2

2D

triangle 3

quadrangle 4

3D

tetrahedron 4

pentahedron – pyramid 5

pentahedron – prism 6

hexahedron – brick 8

Table 2.1: Construction Models in RFEM

2.2 List of All Elements

The finite element types used in RFEM are given in the following table. They are chosen automati-
cally by the program according to the situation.
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Dimensions Element Type Element description

1D beam element element with rotational degrees of freedom

2D

plate element

Lynn–Dhillon

MITC3

MITC4 – used in case of nonlinear calculation

wall element with stabilized zero-energy modes

shell element shell element = plate element + wall element

3D solid element

element with rotational degrees of freedom

element without rotational degrees of freedom (with or without
extra shape functions)

gas element

contact element

Table 2.2: Element description

2.3 Integration Procedure

For members, analytical integration is used for linear cases, while in the nonlinear setting the two
point Gauss quadrature is used along the beam. For nonlinear cases the following integration rule
is used in the cross-section: 2×2 Gauss quadrature for quadrangles and 4-point selective reduced
integration rule for triangles (3 points for 𝜖x, 𝜖y and 1 point for 𝛾xy).

In plate elements, analytical integration is used whenever possible (in Lynn–Dhillon element or in
a triangular element). In other cases, a 2×2 composite Gauss quadrature is used in the element
plane (quadrangles). In solids, a 2×2×2 composite Gauss quadrature is used in hexahedrons.
Reduced one point integration is used for some particular terms to avoid numerical problems.

Let us focus on integration in plateswith respect to their thickness, which is based on theGauss–Lo-
batto quadrature. The Gauss–Lobatto quadrature is a Gauss quadrature in which boundary points
are forced to also be integration points, which allows an exact evaluation of stresses on layer
interfaces in case of multilayered plates. In case of linear calculation, three integration points are
used per layer. In nonlinear calculation, nine integration points are used in the plate (nonlinear
calculation allows one layer only).

2.4 Mesh Settings

Twomesh options exist in general:

• mapped meshing (= structural meshes)

• unmapped meshing

In the mesh settings, the user can define the element size, preference of the mapped meshing,
and additionally has the possibility to generate only triangles or only quadrangles in surface
meshes. Mapped meshes should be preferred due to better accuracy of stress results. In solid
analysis for example, tetrahedrons give less accurate stress results comparing to analysis made on
hexahedrons.
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Figure 2.1: Mapped finite element mesh

2.5 Preventing Zero-EnergyModes

The following elements in RFEM can theoretically exhibit zero-energy modes: 3-node and 4-node
quadratic wall elements, and all solid (4-, 5-, 6-, 8-) node elements with rotational degrees of
freedom. In RFEM the so-called penalty stiffness is added. The stiffness is so small as not to
influence results, but sufficiently high to prevent zero-energy modes.

2.6 Conforming Versus Non-conforming Elements

Non-conforming elements are those whose deformations and rotations are not continuous be-
tween elements:

Figure 2.2: Left: non-conforming finite element, right: conforming finite element

The only non-conforming elements in RFEM are solid elements, which contain extra shape func-
tions (ESF), i.e., linear solid elements without rotational degrees of freedom and linear wall ele-
ments.

2.7 Beam Finite Element

Beam (= member) finite elements contain displacement as well as rotational degrees of freedom.

2.8 Surface Finite Element

For bending components (i.e. for model plate and for bending components in a shell model) the
following three finite element types are used:

• Chirkov element (Kirchhoff plates, linear or Picard calculation)

• Lynn–Dhillon element (Reissner–Mindlin plates, linear or Picard calculation, used up to
RFEM 12.02.138917)

• MITC3 element (replacing the Lynn–Dhillon element from RFEM 13.01.140108)

• MITC4 element (Kirchhoff and Reissner–Mindlin plates, the Newton–Raphson calculation)
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For membrane components (i.e. for model wall and for membrane components in model shell)
the wall element is used. In shells, both elements for bending and membrane components are
combined.

2.8.1 Chirkov Plate Element

The Chirkov element is a planar four-node element composed of four triangle elements used in
case of Kirchhoff plates and linear calculation or nonlinear calculation based on the Picardmethod.
The mid-element node is eliminated. The element uses the mixed formulation. Its unknowns are
three displacements and three rotations in each node. For linear calculations, the Chirkov element
is more precise than the MITC4 element. However, the eliminated node, which cannot be loaded
by any force (it is eliminated under assumption of no loading), brings instability when it is used
together with the geometric or material nonlinearity, where the Newton–Raphson method or
other nonlinear iterative method is used. In this case the MITC4 element is used.

Figure 2.3: Middle node elimination.

For this element, the analytical integration method is used, therefore no zero-energy modes exist.
Shear locking cannot occur in Kirchhoff plates.

2.8.2 Lynn–Dhillon Plate Element

The Lynn–Dhillon element is also a planar four-node element, composed of four triangle elements
used in case of Mindlin plates and linear calculation or nonlinear calculation based on the Picard
method. The mid-element node is eliminated. For linear calculations the Lynn–Dhillon element is
more precise than the MITC4 element. However, the eliminated node, which cannot be loaded
by any force (it is eliminated under assumption of no loading), brings instability when it is used
together with geometric or material nonlinearity, where the Newton–Raphson method or other
nonlinear iterative method is used. In this case the MITC4 element is used.

Figure 2.4: Middle node elimination.

For this element, the analytical integration method is used. Therefore no zero energy modes exist.
Shear locking can occur in case of very thin plates, for this case the bound for shear stiffness is
applied to avoid this problem.
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2.8.3 MITC3 Plate Element

TheMITC3 is an isotropic triangular element exploiting themixed interpolation of tensorial compo-
nents for the transverse shear terms to avoid shear locking, hence it is a more robust finite element,
than the Lynn-Dhillon one. The price to pay is the lower order of approximation (linear, instead of
quadratic), therefore a finer mesh is needed to achieve the same precision of results. It exploits
the full 3-point Gauss integration for the stiffness matrix on the elements. In case of quadrangles,
the aforementioned middle-node elimination technique is used for four triangles.

Since RFEM 13.01.140108, MITC3 fully replaces the Lynn–Dhillon element, namely in linear static
analysis, linear stability analysis, linear dynamic analysis, and nonlinear static analysis in case of
first and second order theory without material nonlinearity and foundation.

2.8.4 MITC4 Plate Element

TheMITC4 element is an isoparametric planar four-node element. A less precise element compared
to the Lynn–Dhyllon element, but more robust in case of nonlinearities. The element uses linear
base functions. For this element the full Gauss quadrature is used (2×2 integration points), which
yields no zero-energy modes. Elimination of shear locking at decreasing thickness is done by the
mixed interpolation of deflection, rotation and slope.

Figure 2.5: MITC4 element.

2.8.5 Wall Element

The element contains two displacements and one rotation per vertex. For walls and shells, the
quadratic polynomial element with rotational degrees of freedom is used. This element is derived
from eight-node/ six-node quadratic isoparametric element by mid-side nodes elimination. This
element can theoretically suffer from zero-energy modes. In RFEM the so-called penalty stiffness
is added. The stiffness is small enough not to influence results, but sufficiently big to prevent
zero-energy modes.

We can call this element quadratic, because it is based and derived from the genuine quadratic
element, however, some additional simplifications are introduced so that the quadratic polynomial
within the element is reduced. As a result, this element is more precise than linear isoparametric
bricks, but less precise than genuine quadratic isoparametric bricks. On the other hand, computa-
tionally it is much more efficient contrary to the genuine quadratic element, because it contains
no mid-nodes. If rotational degrees of freedom are not considered, a linear element with extra
shape functions is used. The extra shape functions are used to avoid shear locking effects.

2.9 Solid Finite Element

All elements have three displacements and three rotations defined in each node, i.e., six unknowns
per node. If setting Ignore rotational degrees of freedom in the Global Calculation Parameters dialog,
then rotational degrees of freedom are not supported, all elements have only three unknowns per
node. From all the elements listed above, hexahedrons are themost accurate and should therefore
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be preferred, if the construction allows the use of a mapped mesh. Especially tetrahedrons can
offer less accurate results for stresses.

All solid elements which have both displacement and rotational degrees of freedom, can theoreti-
cally suffer from zero-energymodes. In RFEM, the so-called penalty stiffness is added. The stiffness
is small enough not to influence results, but sufficiently big to prevent zero-energy modes.

Let us describe inmore detail the hexahedron / brick elements. In RFEM the following two types are
used (note that 4-, 5- and 6-node elements are analogously divided into the same two categories):

• hybrid brick elements with rotational degrees of freedom, used for the shell model

• linear isoparametric brick elements, used for the membrane model (with or without extra
shape functions, also called bubble functions)

2.9.1 Quadratic Solid Element with Rotational Degrees of Free-
dom

Let us describe this kind of element on hexahedron. Hexahedrons have eight nodes, in each of
which six independent components are defined (three displacements and three rotations), hence
the element has altogether 48 unknowns. It is derived from the isoparametric quadratic element,
which has nodes not only in vertices but also in the mid-sides. We can call this element quadratic,
because it is based and derived from the genuine quadratic element, however some additional
simplifications are introduced, so the quadratic polynomial within the element is reduced. As a
result, this element is more precise then linear isoparametric bricks, but less precise then genuine
quadratic isoparametric bricks. On the other hand, computationally it is much more efficient
contrary to the genuine quadratic element, because it contains no mid-nodes.

2.9.2 Linear Solid Element with or Without Extra Shape Func-
tions

Let us focus on hexahedrons. Hexahedrons have eight nodes, in each of which three unknown
displacements are defined (no rotational degrees of freedom). The base functions are linear. From
a theoretical point of view, it is a linear isoparametric element, which allows extra shape functions
(ESF, also called bubble functions). Extra shape functions are extra quadratic base functions, the
corresponding unknowns of which are eliminated from the element, so they do not add any new
unknowns. Their benefit is to increase the accuracy of elements in bending.

2.9.3 Solid Gas Element

The solid gas element is used for gas calculation. Its formulation is based on the ideal gas law,
which under constant temperature takes the form pV =const. This element can be used only
under large deflection analysis.

2.9.4 Solid Contact Element

Solid elements allow themodeling of contact behavior between two surfaces. Thepossible contact
behaviors in RFEM are as follows:

Contact Element Setting Schematic Diagram
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Full force transmission (no contact active)

Behavior based on the Coulomb friction law

Behavior based on the maximum shear stress definition

Behavior based on the Coulomb friction law (with
numerical elastic stabilization)

Behavior based on the maximum shear stress definition
(with numerical elastic stabilization)

Elastic solid behavior

Table 2.3: Solid Contact Element
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